Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine Synechococcus.
نویسندگان
چکیده
Synechococcus, one of the most abundant cyanobacteria in marine ecosystems, displays a broad pigment diversity. However, the in situ distribution of pigment types remains largely unknown. In this study, we combined flow cytometry cell sorting, whole-genome amplification, and fosmid library construction to target a genomic region involved in light-harvesting complex (phycobilisome) biosynthesis and regulation. Synechococcus community composition and relative contamination by heterotrophic bacteria were assessed at each step of the pipeline using terminal restriction fragment length polymorphism targeting the petB and 16S rRNA genes, respectively. This approach allowed us to control biases inherent to each method and select reliable WGA products to construct a fosmid library from a natural sample collected off Roscoff (France). Sequencing of 25 fosmids containing the targeted region led to the assembly of whole or partial phycobilisome regions. Most contigs were assigned to clades I and IV consistent with the known dominance of these clades in temperate coastal waters. However, one of the fosmids contained genes distantly related to their orthologs in reference genomes, suggesting that it belonged to a novel phylogenetic clade. Altogether, this study provides novel insights into Synechococcus community structure and pigment type diversity at a representative coastal station of the English Channel.
منابع مشابه
Development and bias assessment of a method for targeted metagenomic sequencing of marine cyanobacteria.
Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms in oligotrophic waters and responsible for a significant percentage of the earth's primary production. Here we developed a method for metagenomic sequencing of sorted Prochlorococcus and Synechococcus populations using a transposon-based library preparation technique. First, we observed that the cell lysis techniqu...
متن کاملBiogeography of Photosynthetic Light-Harvesting Genes in Marine Phytoplankton
BACKGROUND Photosynthetic light-harvesting proteins are the mechanism by which energy enters the marine ecosystem. The dominant prokaryotic photoautotrophs are the cyanobacterial genera Prochlorococcus and Synechococcus that are defined by two distinct light-harvesting systems, chlorophyll-bound protein complexes or phycobilin-bound protein complexes, respectively. Here, we use the Global Ocean...
متن کاملSelf-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus.
The evolutionary success of marine Synechococcus, the second-most abundant phototrophic group in the marine environment, is partly attributable to this group's ability to use the entire visible spectrum of light for photosynthesis. This group possesses a remarkable diversity of light-harvesting pigments, and most of the group's members are orange and pink because of their use of phycourobilin a...
متن کاملPhycoerythrin Signatures in the Littoral Zone
I am interested in understanding how, and in what ways, the taxonomic composition of the phytoplankton affects ecosystem-level processes in the sea. I am particularly interested in the relationship between the optical environment and the distribution of phytoplankton with different light harvesting pigments. To this end, I have been working in collaboration with experts in remote sensing and oc...
متن کاملNovel Synechococcus Genomes Reconstructed from Freshwater Reservoirs
Freshwater picocyanobacteria including Synechococcus remain poorly studied at the genomic level, compared to their marine representatives. Here, using a metagenomic assembly approach we discovered two novel Synechococcus sp. genomes from two freshwater reservoirs Tous and Lake Lanier, both sharing 96% average nucleotide identity and displaying high abundance levels in these two lakes located at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology ecology
دوره 88 2 شماره
صفحات -
تاریخ انتشار 2014